Commenti Recenti

giovedì 2 ottobre 2014

Colibrì monoeffetto biellato - Episodio 5

Il video di seguito mostra una prova di mantenimento con il Colibrì collegato direttamente all'uscita del compressore. In questo modo l’aria arriva dalla pompa al cassetto di immissione attraverso un tubo evitando il passaggio attraverso la bombola di accumulo.
Si tratta di una prova non banale che ha il pregio di mettere a nudo le prestazioni effettive dell'espansore.
Si segnala che rispetto all'Episodio 4 è stato sostituito sia il cilindro che il pistone.



Il diagramma di flusso riportato subito sotto illustra graficamente cosa accade a livello fisico.


L’efficienza complessiva è data dal rapporto fra la potenza erogata e quella immessa ed è il risultato del prodotto dell'efficienza dei vari passaggi.

Efficienza complessiva = Potenza erogata / Potenza immessa = Eff.1 · Eff.2 · Eff.3 · Eff.4

dove:

Eff.1 = Efficienza del motore elettrico del compressore (conversione da energia elettrica in lavoro meccanico)
Eff.2 = Efficienza meccanica del compressore (conversione del lavoro meccanico in energia potenziale meccanica dell’aria compressa)
Eff.3 = Efficienza meccanica del Colibrì (conversione dell’energia potenziale meccanica in lavoro meccanico)
Eff.4 = Efficienza dell’alternatore (conversione del lavoro meccanico in energia elettrica)

RISULTATI DELLA PROVA
Guardando il video si riscontra che la potenza elettrica assorbita dal compressore oscilla fra 800W e 840W. Per semplicità si può assumere che abbia un valore medio di 820W.
Sempre nel video si può osservare che la potenza elettrica generata dal Colibrì si stabilizza intorno ai 74W.
L’efficienza complessiva di tutti i passaggi risulta pertanto pari a

Efficienza complessiva = Potenza elettrica erogata / Potenza elettrica assorbita = 74W / 820W = 0,09 (=9%)

Per spingere l'analisi oltre a questo calcolo è necessario fare alcune ipotesi sull'efficienza del compressore.
Esso ha circa 32 anni di servizio alle spalle, ma ancora si difende bene.
Sulla base di una verifica di rendimento eseguita su un altro compressore di potenza similare, ma di fabbricazione recente (per i dettagli si rimanda al post intitolato "Efficienza di un compressore commerciale - Episodio 2"), si può in prima istanza azzardare che il compressore della prova abbia un rendimento di 0,15 (=15%).

In questo modo si calcola che degli 820W elettrici assorbiti solo il 15% di questi arrivano con l’aria compressa al Colibrì (cioè 123W).
Dai 123W in ingresso il sistema Colibrì+alternatore riesce a generare 74W di energia elettrica con un’efficienza (elettrica) pari a

Efficienza elettrica = 74W/123W = 0,60 (=60%)

Ipotizzando che l’alternatore abbia a sua volta un’efficienza di 0,7 (=70%), l’efficienza meccanica del prototipo vale

Efficienza meccanica = 0,6/0,7 = 0,857 (=85,7%)

Lo scetticismo e la diffidenza nei confronti di tale valore è d'obbligo. E' davvero molto molto elevato perché possa essere reale.

Una cosa che nel video non si riesce ad apprezzare è la temperatura a cui si trovano la testata del compressore
e il tubo di collegamento. Entrambe le parti erano molto calde (intorno ai 120°C).
Da un certo punto di vista la prova eseguita potrebbe quasi considerarsi un test di resistenza termica in vista del vapore.

Il fatto che l'aria compressa entri calda fa certamente migliorare l'efficienza a carico del compressore in quanto si evita la perdita pressoria dovuta al raffreddamento all'interno della bombola.
Ipotizzando che la temperatura dell’aria all’ingresso del Colibrì sia di 120°C invece di 20°C, il volume di aria disponibile per il Colibrì aumenta di un coefficiente uguale al rapporto fra le due temperature espresse in Kelvin che risulta essere pari a

120+273 / 20+273 = 1,34

Perciò l’ipotetico 0,15 (=15%) di efficienza del compressore diventa

0,15·1,34 = 0,20 (=20%)

Di seguito viene ripetuto il calcolo dei rendimenti elettrico e meccanico del Colibrì su questa ipotesi di rendimento del compressore.

Degli 820W elettrici assorbiti solo il 20% di questi arrivano con l’aria compressa al Colibrì (cioè 164W).
Da questi 164W in ingresso il sistema Colibrì+alternatore riesce a rigenerare 74W di energia con un’efficienza elettrica pari a 74W/164W = 0,45 (=45%).
Ipotizzando che l’alternatore abbia a sua volta un’efficienza di 0,7 (=70%), l’efficienza meccanica del prototipo risulta essere pari a 0,45/0,7 = 0,644 (=64,4%).
Sempre molto elevato, ma decisamente più credibile.

Purtroppo i dubbi sulla validità delle approssimazioni fatte per arrivare alla stima di questo valore sono tanti.
Solo il vapore potrà dare qualche certezza in più.
Si noti che con un rendimento meccanico del 64% resta ancora un po’ di margine di miglioramento grazie alla versione Colibrì free piston che altrimenti sarebbe stata quasi inutile.

APPROFONDIMENTI CONSIGLIATI
Sullo stesso argomento si segnala la discussione intitolata "Il motore Colibrì: dalla teoria alla pratica" presente sul forum Scienza Laterale.



Nessun commento:

Posta un commento

Puoi scrivere qui eventuali richieste di chiarimenti, perplessità o il tuo parere su quanto esposto / Please, write here questions, doubts or your opinion on the post

INDICE DEI CONTENUTI

I. GENERAZIONE DI ENERGIA ELETTRICA
30. Considerazioni sulla generazione elettrica
90. Analisi economica sulla cogenerazione domestica
26. L'alternatore lineare

II. GAS IDEALI: DALLE TRASFORMAZIONI AI MOTORI
1. L'equazione di stato dei gas perfetti: istruzioni per l'uso
3. P·V=n·R·T: considerazioni laterali
13. La trasformazione isocora
14. La trasformazione isoterma
15. La trasformazione isobara
16. La trasformazione adiabatica
65. La trasformazione isoentalpica
83. Confronto fra i processi isotermici e i processi isoentropici
2. Trasformazioni isocore e trasformazioni isobare: considerazioni sugli scambi energetici
4. Trasformazioni isoterme e trasformazioni adiabatiche: considerazioni sugli scambi energetici
74. Efficienza di un compressore commerciale - Episodio 1
75. Efficienza di un compressore commerciale - Episodio 2
76. Lavoro massimo ottenibile dall'aria compressa
91. Energia potenziale meccanica di un gas
5. Il ciclo di Carnot
12. Il trasferimento del calore
6. Il rigeneratore di calore
7. Il rigeneratore di calore - Parte seconda
28. Il rigeneratore di calore: basi teoriche
29. Dimensionamento del rigeneratore di calore
8. Il ciclo di Stirling
9. Efficienza del rigeneratore di calore e rendimento del ciclo di Stirling
10. Il ciclo di Brayton
11. Ciclo di Brayton: considerazioni su rendimento e lavoro utile
17. Il motore di Cayley free piston - Episodio 01
18. Il motore di Cayley free piston - Episodio 02
19. Il motore di Cayley free piston - Episodio 03
20. Il motore di Cayley free piston - Episodio 04
21. Il motore di Cayley free piston - Episodio 05
22. Il motore di Cayley free piston - Episodio 06
23. Il motore di Manson free piston - Episodio 07
24. Il motore di Manson free piston - Episodio 08
25. Il motore di Manson free piston - Episodio 09
27. Efficienza del rigeneratore e rendimento del motore di Manson
31. Il motore di Manson free piston - Episodio 10
32. Il motore di Manson free piston - Episodio 11
33. Il motore di Manson free piston a doppio effetto
34. Il motore di Manson LTD
35. Stufa con recupero termico
37. Il motore di Cayley free piston a doppio effetto
38. Il motore di Cayley free piston a doppio effetto - Seconda versione
39. Motore di Cayley e motore di Manson: considerazioni laterali
85. Falsi motori

III. DALL'ACQUA AL VAPORE
36. L'heat pipe
40. La tensione di vapore dell'acqua
41. Gli scambi termici dell'acqua liquida
42. Gli scambi termici nella vaporizzazione dell'acqua
43. Gli scambi termici dell'acqua a pressione costante
44. Cp dell'acqua vaporizzata: considerazioni laterali
45. La densità dell'acqua
46. Densità del vapore acqueo: considerazioni laterali
47. Il ciclo isobaro-isocoro del vapore
48. Entalpia ed energia interna
49. L'espansione adiabatica del vapore saturo - Episodio 01
50. L'espansione adiabatica del vapore saturo - Episodio 02
51. Il ciclo Rankine del vapore saturo
52. Il ciclo Rankine del vapore surriscaldato
53. L'espansione adiabatica del vapore nel diagramma di Mollier
54. Il Colibrì
55. Raccolta di link sui motori Uniflow
56. Motore a vapore con distributore a cassetto
58. Colibrì free piston a doppio effetto di tipo A
59. Colibrì free piston a doppio effetto di tipo B
60. Il ciclo termodinamico del Colibrì
61. Il Colibrì a vapore
62. Il lavoro di pompaggio nel Colibrì a vapore
63. Colibrì Vs Uniflow Vs Rankine
64. Colibrì Vs Uniflow Vs Rankine: considerazioni laterali
66. La trasformazione isoentalpica del vapore
67. Energia potenziale meccanica dei gas
68. Energia potenziale meccanica dei gas - Seconda Parte
69. L'energia potenziale meccanica del vapore saturo
70. Efficienza termomeccanica del vapore saturo
71. Efficienza termomeccanica del vapore surriscaldato
72. Colibrì monoeffetto biellato - Episodio 1
73. Colibrì monoeffetto biellato - Episodio 2
77. Colibrì monoeffetto biellato - Episodio 3
86. Il Colibrì è in realtà un leone
88. Ricerche sull'anteriorità del lion-Powerblock
89. The Una-flow Steam-engine (1912)
92. Colibrì monoeffetto biellato - Episodio 4
93. The Una-flow Steam-engine - Capitolo I
94. Colibrì monoeffetto biellato - Episodio 5
97. Il Colibrì – Descrizione dell’Idea
98. Il Colibrì – Contesto Commerciale
99. Il Colibrì – La Tecnologia - PARTE I
100. Il Colibrì – La Tecnologia - PARTE II
101. Il Colibrì – La Tecnologia - PARTE III
102. Il Colibrì – La Tecnologia - PARTE IV
103. Il Colibrì – La Tecnologia - PARTE V
104. Il Colibrì – Campi di Applicazione
105. Il Colibrì – Punti di Forza
106. Il Colibrì – Svantaggi

IV. RICERCA DI FRONTIERA
57. Considerazioni economiche sull'E-cat di Andrea Rossi
78. Dal compressore elettrochimico al catodo cavo di Arata/Celani
84. Il mondo non viene assimilato; viene fatto - Sir Karl Raimund Popper (1902 - 1994)
87. Speculazioni, azzardi e previsioni sulla fusione fredda
96. E-Cat e dintorni
107. E-Cat e dintorni
109. La ganascia termica nella generazione di calore anomalo - Introduzione
110. La ganascia termica nella generazione di calore anomalo - Il ciclo operativo
111. La ganascia termica nella generazione di calore anomalo - Contributo al COP delle varie fasi del ciclo
112. La ganascia termica nella generazione di calore anomalo - Sulla termodinamica e sulla cinetica
113. La ganascia termica nella generazione di calore anomalo - Sui requisiti termici e sulle tempistiche
114. La ganascia termica nella generazione di calore anomalo - Sull’importanza del rapporto fra la superficie e il volume del metallo
115. La ganascia termica nella generazione di calore anomalo - Sulle critiche al COP>2 e alla perdita di controllo della reazione
116. Teoria per l'unificazione della materia e della radiazione
117. Considerazioni laterali sulla radiazione elettromagnetica
118. Il propulsore fotonico
119. Materia e radiazione elettromagnetica: consigli per la ricerca
120. Scienza Laterale e Spazionica uniti nella ricerca
121. Dalla relazione di Einstein alla massa radiante
122. Considerazioni sulla relazione di Einstein
123. Fusione nucleare calda o fusione nucleare fredda?
124. Hot nuclear fusion or cold nuclear fusion?
125. Stima del cammino libero medio
126. Mean free path evaluation
127. Dematerializzazione
128. Dematerialisation
129. Carica elettrica relativistica
130. Relativistic electric charge
131. Ragionamenti sulla carica elettrica relativistica
132. Reasoning on the relativistic electric charge
133. Conduzione elettrica nei gas
134. Electric flow in gases